Knowledge base dedicated to Linux and applied mathematics.
Home > Mathematics > Linear Systems > Preconditioned Conjugate Gradient Method
All the versions of this article: <English> <français>
Solving linear systems resulting from the finite differences method or of the finite elements shows the limits of the conjugate gradient. Indeed, Spectral condition number of such matrices is too high. The technique of Preconditioned Conjugate Gradient Method consists in introducing a matrix C subsidiary.
We want to solve the following system:
$$Ax=b,$$
where $A$ is a $n\times n$ symmetric definite and positive matrix($A^\top =A$ and $x^\top Ax>0$, for all $x\in \mathbf{R}^n$ non zero).
Let $x_\star$ be the exact solution of this system.
It happens sometimes that the spectral condition number $\kappa(A)$ is too high (eigenvalues are not well distributed). Preconditionnement
consists in introducing regular matrix $C\in\mathcal{M}_n(\mathbb{R})$ and solving the system:
$$C^{-1}(Ax)=C^{-1}b\Leftrightarrow Ax=b$$
such that the new spectral condition number is smaller for a judicious choice of the matrix $C$.
Let $x_0\in \mathbb{R}^{n}$ be an intial vector, Preconditioned Gradient Method algorithm
is the following one:
$$r_{0}=b-Ax_{0}$$
$$ z_{0}={C}^{-1}r_{0}$$
$$d_{0}=z_{0}$$
For $k=0,1,2,\ldots$
$$ \alpha_k={{z_{k}^{\top}r_{k}}\over{{
d}_k^{\top}Ad_k}}$$
$$ x_{k+1}=x_{k}+\alpha_kd_k$$
$$r_{k+1}=r_{k}-\alpha_kAd_k$$
$$z_{k+1}={C}^{-1}r_{k+1}$$
$$\beta_{k+1}={{z_{k+1}^{\top}r_{k+1} } \over {
z_{k}^{\top}r_{k} } }$$
$$d_{k+1}=z_{k+1}+\beta_{k+1}d_{k}$$
EndFor
Jacobi Preconditioner consists in taking the diagonal of $A$ for the matrix $C$, i.e.
$$ C_{ij}= \left\{ \begin{array}{cc} A_{ii} & \textrm{si }i=j ,\\ 0 &\textrm{sinon}. \end{array} \right. $$
Advantages of such preconditioner are the facility of its implementation and the low memory it needs.
But we can find other preconditioners such that resolution of the linear system is fastest, it is the case of the
SSOR Preconditioner.
We decompose the symmetric matrix $A$ like follows:
$$A=L+D+L^{\top}$$
where $L$ is the strictly lower part of $A$ and $D$ is the diagonal of $A$. SSOR Preconditioner consists
in taking
$$C=(\frac{D}{\omega}+L)\frac{\omega}{2-\omega}D^{-1}(\frac{D}{\omega}+L^{\top})$$
where $\omega$ is a relaxation parameter. A necessary and sufficient condition of the Preconditioned Gradient Method
algorithm is to fix the parameter $\omega$ in the interval $]0,2[$.