1/x এর অবক্ষেপণ
ফাংশন f(x)=1/x এর অবক্ষেপণ f’(x) হল: f’(x) = -1/x^2 সমস্ত শূন্য নয় এমন x এর জন্য
1/x এর অবক্ষেপণ
ফাংশন $f(x)=\frac{1}{x}$ এর অবক্ষেপণ হল:
\[\forall x \in \mathbb{R}^* , f'(x) = -\dfrac{1}{x^2}\]প্রমাণ
ধরা যাক $x \in \mathbb{R}^*$
\[\begin{aligned} \frac{df}{dx} &= \lim_{h \rightarrow 0} \frac{\dfrac{1}{x+h} - \dfrac{1}{x}}{h}\\ &= \lim_{h \rightarrow 0} \frac{\dfrac{1}{x+h} \cdot \dfrac{x}{x} - \dfrac{1}{x} \cdot \dfrac{x+h}{x+h}}{h}\\ &= \lim_{h \rightarrow 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h}\\ &= \lim_{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h}\\ &= \lim_{h যখন 0 এর দিকে যায়} \frac{\frac{-1}{x(x+h)}}{1}\\ &= \lim_{h যখন 0 এর দিকে যায়} \frac{-1}{x(x+h)} = \frac{-1}{x(x+0)}\\ &= -\frac{1}{x^{2}} \end{aligned}\]অতএব:
\[\forall x \in \mathbb{R}^* , f'(x) = -\dfrac{1}{x^2}\]আপনি যদি এই পোস্ট বা এই ওয়েবসাইট সাহায্যকর পেতেন এবং আমাদের কাজে সাহায্য করতে চান তবে দয়া করে একটি দান করতে চিন্তা করুন। ধন্যবাদ!
আমাদের সাহায্য করুন