Derivative of exp x, e^x
Derivative f’ of the function f(x)=exp x is: f’(x) = exp x for any value of x.
Derivative of exponential x
Derivative $f’$ of the function $f(x)=\exp x= e^{x}$ is: \(\forall x \in ]-\infty, +\infty[ , f'(x) = \exp x = e^{x}\)
Proof/Demonstration
\[\begin{aligned} f^\prime(x)=(e^x)^\prime &=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\ &=\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} \\ &=\lim _{h \rightarrow 0} \frac{e^{x}(e^{h}-1)}{h} \\ &=e^{x}\cdot \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \\ &=e^{x}\cdot f^\prime(0) \end{aligned}\]We need to find the derivative $f^\prime(0)$. We fix: $n=e^{h}-1$, ie $n+1=e^{h}$ ie $h=\ln(1+n)$
\[\begin{aligned} f^\prime(0)&= \lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \\ &=\lim _{n \rightarrow 0} \frac{n}{\ln (1+n)} \\ &=\lim _{n \rightarrow 0} \frac{1}{\displaystyle\frac{1}{n}\ln (1+n)} \\ &=\lim _{n \rightarrow 0} \frac{1}{\displaystyle\ln \left((1+n)^{\frac{1}{n}}\right)} \\ &=\frac{1}{\ln e} = 1 \end{aligned}\]because
\[\lim _{n \rightarrow 0}(1+n)^{\frac{1}{n}}=e\]see Proof.
We conclude since $f^\prime(x)=e^{x}\cdot f^\prime(0)$
\[f^\prime(x)=e^{x}\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function