Derivative of arcsin x
Derivative f’ of function f(x)=arcsin x is: f’(x) = 1 / √(1 - x²) for all x in ]-1,1[. To show this result, we use derivative of the inverse function sin x.
Derivative of arcsin x
Derivative $f’$ of function $f(x)=\arcsin{x}$ is: \(\forall x \in ]–1, 1[ ,\quad f'(x) = \dfrac{1}{\sqrt{1-x^2}}\)
Proof
Remember that function $\arcsin$ is the inverse function of $\sin$ :
\[\left(f^{-1} \circ f\right)=\left(\sin \circ \arcsin\right)(x)=\sin(\arcsin(x))=x\]Using result of derivative of inverse functions, we have:
\[(g^{-1})^{\prime}(x)=\frac{1}{g^{\prime}(g^{-1}(x))}\]Taking : $g^{-1}=f=\arcsin$ and $g=f^{-1}=\sin$, we have:
\[f^{\prime}(x)=\frac{1}{\sin^{\prime}(f(x))}\]Since:
Derivative of sin x , $g(x)=\sin x$ is:
\[\forall x \in \mathbb{R}, \quad g'(x) = \cos x\]So, we have:
\[\begin{aligned} f^{\prime}(x)&=\frac{1}{\sin^{\prime}(f(x))}\\ &=\frac{1}{\cos (f(x))}\\ &=\frac{1}{\cos (\arcsin x)}\\ \end{aligned}\]We have
\[\forall X \in \mathbb{R}, \quad \cos^2 X + \sin^2 X =1\]and
by definition
\[\left(f^{-1} \circ f\right)=\left(\sin \circ \arcsin \right)(x)={\color{red}{\sin(\arcsin(x))=x}}\]Taking $X=\arcsin x$, it gives:
\[\begin{aligned} 1&=\cos^2 X + \sin^2 X\\ &=\cos^2 (\arcsin x) + {\color{red}{\sin^2 (\arcsin x)}}\\ &=\cos^2 (\arcsin x) + {\color{red}{x^2}}\\ \end{aligned}\]Now, we have:
\[\cos^2 (\arcsin x) = 1 - x^2 \Longrightarrow \cos (\arcsin x) = \pm \sqrt{1 - x^2}\]Function $\arcsin x$ is defined for all $x \in [-1,1]$ and we have
\[\forall x \in [-1,1], \quad \arcsin x \in [-\frac{\pi}{2},\frac{\pi}{2}]\]since it is the inverse function of $\sin:[-\dfrac{\pi}{2},\dfrac{\pi}{2}] \to [-1,1]$.
Since angle $\arcsin x \in \displaystyle [-\frac{\pi}{2},\frac{\pi}{2}]$, then cosine of this angle $\cos (\arcsin x)$ is greater than or equal to zero. Then the only possible solution is :
\[\cos (\arcsin x) = + \sqrt{1 - x^2}\]We conclude that:
\[\forall x \in ]–1, 1[ ,\quad f'(x) = \dfrac{1}{\cos (\arcsin x)}=\dfrac{1}{\sqrt{1 - x^2}}\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function