Derivative of arctan x
Derivative f’ of function f(x)=arctan x is: f’(x) = 1 / (1 + x²) for all x real. To show this result, we use derivative of the inverse function tan x.
Derivative of arctan x
Derivative $f’$ of function $f(x)=\arctan{x}$ is: \(\forall x \in \mathbb{R} ,\quad f'(x) = \dfrac{1}{1+x^2}\)
Proof
Remember that function $\arctan$ is the inverse function of $\tan$ :
\[\left(f^{-1} \circ f\right)=\left(\tan \circ \arctan\right)(x)=\tan(\arctan(x))=x\]Using result of derivative of inverse functions+ we have:
\[(g^{-1})^{\prime}(x)=\frac{1}{g^{\prime}(g^{-1}(x))}\]Taking : $g^{-1}=f=\arctan$ and $g=f^{-1}=\tan$, we have: \(f^{\prime}(x)=\frac{1}{\tan^{\prime}(f(x))}\)
We have:
Derivative of tangent function $g(x)=\tan x$ is: \(\forall x \neq \dfrac{\pi}{2}+k\pi, k \in \mathbb{Z}, \quad g'(x) = 1+\tan ^{2} x\)
So, we have:
\[\begin{aligned} f^{\prime}(x)&=\frac{1}{\tan^{\prime}(f(x))}\\ &=\frac{1}{1+\tan^2(f(x))}\\ &=\frac{1}{1+\tan^2(\arctan x)}\\ \end{aligned}\]Now by defiinition: \(\left(f^{-1} \circ f\right)=\left(\tan \circ \arctan\right)(x)=\tan(\arctan(x))=x\)
We conclude that: \(\forall x \in \mathbb{R} ,\quad f'(x) = \dfrac{1}{1+x^2}\)
If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function