Derviative of 1/u
The derivative of 1/u for all u(x) not zero, is given by: -u’/u^2. Let’s prove it using limits.
Derivative of 1/u(x)
Let
The derivative
Proof
Let
Therefore, we have:
If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function