Derivative of cos x
Derivative f’ of the function f(x)=cos x is: f’(x) = - sin x for any value of x.
Derivative of cos x
Derivative $f’$ of the function $f(x)=\cos x$ is: \(\forall x \in ]-\infty, +\infty[ , f'(x) = -\sin x\)
Proof
\[\begin{aligned} &\frac{\cos (x+h)-\cos x}{h}=\frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos x}{h}\\ &\frac{\cos (x+h)-\cos x}{h}=\frac{\sin h}{h} \times(-\sin x)+\cos x \times \frac{\cos h-1}{h}\\ \end{aligned}\]We have:
\[\begin{aligned} \frac{\cos h-1}{h} &=\frac{(\cos h-1)(\cos h+1)}{h(\cos h+1)} \\ &=\frac{\cos ^{2} h-1}{h(\cos h+1)} \\ &=\frac{-\sin ^{2} h}{h(\cos h+1)} \\ &=\frac{\sin h}{h} \times \frac{-\sin h}{\cos h+1} \\ \end{aligned}\]Then
\[\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0\]because
\[\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\]This equality has been proved in /mathematics/limits/article/proof-of-limit-of-sin-x-x-1-as-x-approaches-0
Now
\[\begin{aligned} \lim _{h \rightarrow 0}\frac{\cos (x+h)-\cos x}{h}&=\lim _{h \rightarrow 0}\frac{\sin h}{h} \times(-\sin x)+\cos x \times \lim _{h \rightarrow 0}\frac{\cos h-1}{h}\\ &=1\times(-\sin x) + \cos x \times 0 \\ \end{aligned}\]We conclude:
\[\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=-\sin x\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function