Derivative of composite function (g ∘ f) (g circle f), chain rule is defined by (g ∘ f)’(x) = g’(f(x)) × f’(x) .

Derivative of composite function (u ∘ v) (u circle v), chain rule is defined by (u ∘ v)’(x) = u’(v(x)) × v’(x) .

Chain Rule - Derivative of composite function g circle f g ∘ f

Consider I and J two intervals of R and two functions f,g defined by

f:IRg:JR

such f(I)J. Let x a point of the interval I. If f is differentiable at x and g is differentiable at f(x) then the composite function gf is differentiable at x, and the Chaine Rule is given by

xI,(gf)(x)=g(f(x))f(x)

Proof

We have by definition:

(gf)(x)=limh0(gf)(x+h)(gf)(x)h=limh0g(f(x+h))g(f(x))h=limh0g(f(x+h))g(f(x))h×f(x+h)f(x)f(x+h)f(x)=limh0g(f(x+h))g(f(x))f(x+h)f(x)×f(x+h)f(x)h=limh0g(f(x+h))g(f(x))f(x+h)f(x)×limh0f(x+h)f(x)h=limh0g(f(x+h))g(f(x))f(x+h)f(x)×f(x)

Using the change of variable k=f(x+h)f(x)

k=f(x+h)f(x)f(x+h)=f(x)+k

We have:

limh0k=limh0f(x+h)f(x)=f(x+0)f(x)=0

It means, when h approaches 0, then k approaches 0.

Finding the limit when h approaches 0, by using the change of variable, is the same as finding the limit when k approaches 0:

limh0g(f(x+h))g(f(x))f(x+h)f(x)=limk0g(f(x)+k)g(f(x))k=g(f(x))

We obtain:

(gf)(x)=limh0g(f(x+h))g(f(x))f(x+h)f(x)×f(x)=g(f(x))f(x)

We conclude:

(gf)(x)=g(f(x))f(x)