# Derivative of u/v

The derivative of u(x)/v(x) is given by : (u’(x)v(x) - u(x) v’(x))/v^2(x). Let’s prove it using the derivative of an inverse function rule and the product rule for derivatives.

## Derivative of u(x)/v(x)

Let $u(x)$ and $v(x)$ be two functions of the real variable $x$ such that $v(x) \neq 0$ and $f(x) = \frac{u(x)}{v(x)}$.

The derivative $f’(x)$ of the function $f(x)$ is: \(\forall x \in \mathbb{R}^*, \quad f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}\)

## Proof

Expressing $f$ as a product, we have: \(f(x)= u(x) \cdot \frac{1}{v(x)} \\\)

Using the derivative of an inverse function rule, we have: \(\left(\frac{1}{v(x)}\right)' = -\frac{v'(x)}{v^2(x)}\)

Therefore, using the product rule for derivatives, we have: \(\begin{aligned} f'(x) &= \left(u(x) \cdot \frac{1}{v(x)}\right)'\\ &= u'(x) \cdot \frac{1}{v(x)} + u(x) \cdot \left(\frac{1}{v(x)}\right)'\\ &= u'(x) \cdot \frac{1}{v(x)} - u(x) \cdot \frac{v'(x)}{v^2(x)}\\ &= \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)} \end{aligned}\)

Therefore:

\[\forall x \in \mathbb{R}^*, \quad v(x) \neq 0, \quad f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!

Help Us### Articles in the same category

- Derivative of x power n
- Derivative of u/v
- Derivative of u*v , u times v
- Derivative of tan x
- Derivative of square root of x
- Derivative of sin x
- Derivative of ln x
- Derivative of ln u
- Derivative of inverse functions
- Derivative of exp x, e^x
- Derivative of exp(u) , exp(u(x))
- Derivative of cos x
- Derivative of argsinh(x)
- Derivative of arctan x
- Derivative of arcsin x
- Derivative of arccos x
- Derivative of 1/x
- Derviative of 1/u
- Chain rule proof - derivative of a composite function
- Mathematics - Derivative of a function