Développement limité de arcsinus arcsin x en 0 - Démonstration
Ci-dessous la démonstration du développement limité de la fonction arcsinus arcsin x autour de 0
Développement limité la fonction arcsinus arcsin x en 0
\[\begin{aligned} \arcsin x &=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{3}{8} \frac{x^{5}}{5}+\cdots+ \frac{(2 n) !}{2^{2n} (n !)^2} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \\ \end{aligned}\]Définition du petit o , notation de Landau
Soit $f$ une fonction définie dans un voisinage de 0. Pour $\mathrm{n} \in \mathbb{N}^{*},$ on dit que $f$ est négligeable devant $x^{n}$
\[f(x)=o\left(x^{n}\right) \Longleftrightarrow\forall \varepsilon>0, \exists \eta \in >0, \quad \forall x \in ]-\eta, \eta[ , \quad \left|f(x)\right| < \varepsilon \left|x^{n}\right|\]Preuve - Démonstration
A tout réel $x \in[-1,1],$ associe l’unique réel $y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $\sin y=x$ Autrement dit :
\[\arcsin x=y \Leftrightarrow x=\sin y \quad \text { et } \quad y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\]On a :
\[\forall x \in [-1,1], \quad \sin(\arcsin(x))= x\]Une propriété remarquable du sinus est que:
\[\cos^{2} x + \sin^{2} x=1\]Pour déterminer le développement limité de $\arcsin$, nous allons démontrer que
\[\arcsin^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}\]et utiliser les propriétés d’intégration du développement limité
\[\frac{1}{\sqrt{1-x^2}}=1+\frac{x^2}{2}+\frac{3}{8} x^{4}+\cdots+ \frac{1.3 \cdot 5 \ldots(2 n-1)}{2^{n} n !} x^{2n}+o\left(x^{2n}\right)\]Ce dernier développement est obtenu par composition de la fonction $u=-x^2$ et du développement limité
\[\begin{aligned} (1+u)^{-\frac{1}{2}} = \frac{1}{\sqrt{1+u}}&=1-\frac{u}{2}+\frac{3}{8} u^{2}+\cdots+(-1)^{n} \cdot \frac{1.3 \cdot 5 \ldots(2 n-1)}{2^{n} n !} u^{n}+o\left(u^{n}\right) \\ &=1+\frac{x^2}{2}+\frac{3}{8} x^{4}+\cdots+ \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n} n !} x^{2n}+o\left(x^{2n}\right)\\ \end{aligned}\]$\forall x \in [-1,1]$, en dérivant $\sin(\arcsin(x))= x$, on a:
\[\arcsin^{\prime} x \cdot\cos(\arcsin x) =1\]et en utilisant la propriété remarquable du sinus:
\[\begin{aligned} \arcsin^{\prime} x&=\frac{1}{\cos(\arcsin x)}=\frac{1}{\sqrt{1-\sin^{2}(\arcsin x)}}\\ &=\frac{1}{\sqrt{1-x^{2}}}\\ &=1+\frac{x^2}{2}+\frac{3}{8} x^{4}+\cdots+ \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n} n !} x^{2n}+o\left(x^{2n}\right)\\ \end{aligned}\]Enfin, en utilisant les propriétés d’intégration des développements limités, on a:
\[\begin{aligned} \arcsin x &=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{3}{8} \frac{x^{5}}{5}+\cdots+ \frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 n-1)}{2^{n} n !} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \\ \end{aligned}\] \[\begin{aligned} \frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 n-1)}{2^{n} n !}&=\frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 n-1)}{2^{n} n !}\cdot \frac{ 2 \cdot 4 \cdot 6 \cdot \ldots \cdot2 n}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot2 n}\\ &=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \ldots(2 n-1)\cdot 2n}{2^{n} n !}\cdot \frac{ 1}{2 \times 1 \cdot 2 \times 2 \cdot2 \times 3 \cdot \ldots \cdot2 \times n}\\ &=\frac{(2 n) !}{2^{n} n !}\cdot \frac{ 1}{2^{n} n !}\\ &=\frac{(2 n) !}{2^{2n} (n !)^2}\\ \end{aligned}\]On conclut que:
\[\begin{aligned} \arcsin x &=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{3}{8} \frac{x^{5}}{5}+\cdots+ \frac{(2 n) !}{2^{2n} (n !)^2} \frac{x^{2 n+1}}{2 n+1}+o\left(x^{2 n+2}\right) \\ \end{aligned}\]Si vous avez trouvé cet article ou ce site utile et souhaitez soutenir notre travail, veuillez envisager de faire un don. Merci !
Aidez-nousArticles dans la même rubrique
- Développements limités au voisinage de 0
- Développement limité du sinus hyperbolique sh x , sinh x en 0 - Démonstration
- Développement limité du cosinus hyperbolique ch x , cosh x en 0 - Démonstration
- Développement limité de tangente hyperbolique tanh x, th x en 0 - Démonstration
- Développement limité de tan x en 0 - Démonstration
- Développement limité de sin x en 0 - Démonstration
- Développement limité de ln(1+x) en 0 - Démonstration
- Développement limité de exp x en 0 - Démonstration
- Développement limité de cos x en 0 - Démonstration
- Développement limité de argument sinus hyperbolique argsh x en 0 - Démonstration
- Développement limité de arctan x en 0 - Démonstration
- Développement limité de arcsinus arcsin x en 0 - Démonstration
- Développement limité de arccos x en 0 - Démonstration
- Développement limité de (1+x)^alpha en 0 - Démonstration
- Développement limité de 1/(1-x) en 0 - Démonstration
- Développement limité de 1/(1+x) en 0 - Démonstration 8080489
- Développement limité de 1/(1+x)^(1/2) en 0 - Démonstration
- Mathematiques - Développements limités