Math-Linux.com

Knowledge base dedicated to Linux and applied mathematics.

Accueil > Mathématiques > Développements limités > Développement limité de sin x en 0 - Démonstration

Développement limité de sin x en 0 - Démonstration

Ci-dessous le développement limité de la fonction sinus sin x autour de 0


Développement limité de la fonction sinus sin x en 0

$$ \begin{aligned} \sin x &=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots+(-1)^{n} \cdot \frac{x^{2 n+1}}{(2 n+1) !}+o\left(x^{2 n+2}\right) \\ \end{aligned} $$

Définition du petit o , notation de Landau

Soit $f$ une fonction définie dans un voisinage de 0. Pour $\mathrm{n} \in \mathbb{N}^{*},$ on dit que $f$ est négligeable devant $x^{n}$

$$ f(x)=o\left(x^{n}\right) \Longleftrightarrow\forall \varepsilon>0, \exists \eta \in >0, \quad \forall x \in ]-\eta, \eta[ , \quad \left|f(x)\right| < \varepsilon \left|x^{n}\right| $$

Preuve - Démonstration

Soit $f(x)=\sin x$. $f$ est de classe $\mathcal{C}^{n}$ sur un intervalle contenant $0$, d’après le Théorème de Taylor-Young, il existe un développement limité à l’ordre $n$ en 0 qui s’écrit :

$$ f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k !} x^{k}+\mathrm{o}\left(x^{n}\right) $$

On a :

$$ \begin{align*} (\sin (x))’&=\cos (x) \\ ( \sin (x))’’&=-\sin (x) \\ ( \sin (x))’’’&=-\cos(x) \end{align*} $$

Par récurrence, et en évaluant en $x=0$, on obtient :

$$ \left.(\sin (x))^{(k)}\right|_{x=0}=\left\{\begin{array}{ll} (-1)^{(k-1) / 2}, & k \text { impair } \\ 0, & k \text { pair } \end{array}\right. $$

Avec le Théorème de Taylor-Young, on obtient :

$$ \begin{aligned} \sin (x)&=\sum_{k=0, k \text { impair } }^{2n+1} \frac{(-1)^{(k-1) / 2}}{k !} x^{k}+\mathrm{o}\left(x^{2n+2}\right)\\ &=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots+(-1)^{n} \cdot \frac{x^{2 n+1}}{(2 n+1) !}+o\left(x^{2 n+2}\right) \end{aligned} $$

Dans la même rubrique

  1. Développements limités au voisinage de 0
  2. Développement limité de exp x en 0 - Démonstration
  3. Développement limité du sinus hyperbolique sh x , sinh x en 0 - Démonstration
  4. Développement limité du cosinus hyperbolique ch x , cosh x en 0 - Démonstration
  5. Développement limité de sin x en 0 - Démonstration
  6. Développement limité de cos x en 0 - Démonstration
  7. Développement limité de 1/(1-x) en 0 - Démonstration
  8. Développement limité de 1/(1+x) en 0 - Démonstration
  9. Développement limité de ln(1+x) en 0 - Démonstration
  10. Développement limité de arctan x en 0 - Démonstration
  11. Développement limité de tan x en 0 - Démonstration
  12. Développement limité de (1+x)^alpha en 0 - Démonstration
  13. Développement limité de tangente hyperbolique tanh x, th x en 0 - Démonstration
  14. Développement limité de argument sinus hyperbolique argsh x en 0 - Démonstration
  15. Développement limité de arcsinus arcsin x en 0 - Démonstration
  16. Développement limité de arccos x en 0 - Démonstration