Math-Linux.com

Knowledge base dedicated to Linux and applied mathematics.

Accueil > Mathématiques > Trigonométrie > Formule addition sinh(x + y) = sinh x cosh y +cosh x sinh y

Formule addition sinh(x + y) = sinh x cosh y +cosh x sinh y

Toutes les versions de cet article : <English> <français>

Nous allons montrer que pour tout élément x, y réels la formule trigonométrique sinh(x + y) = sinh(x)*cosh(y) +cosh(x)*sinh(y)

Preuve/Démonstration difficile

On part du coté gauche de l’égalité :

$$ \begin{aligned} \sinh (x+y) & =\frac{e^{x+y}-e^{-(x+y)}}{2} \\ & =\frac{e^{x+y}-e^{-x-y}}{2} \\ & =\frac{2 e^{x+y}-2 e^{-x-y}}{4} \\ & =\frac{2 e^{x+y}-2 e^{-x-y}+\left(e^{x-y}-e^{-x+y}\right)-\left(e^{x-y}-e^{-x+y}\right)}{4} \\ & =\frac{2 e^{x+y}+\left(e^{x-y}-e^{-x+y}\right)-\left(e^{x-y}-e^{-x+y}\right)-2 e^{-x-y}}{4} \\ & =\frac{e^{x+y}+e^{x+y}+\left(e^{x-y}-e^{-x+y}\right)-\left(e^{x-y}-e^{-x+y}\right)- e^{-x-y}- e^{-x-y}}{4} \\ & =\frac{e^{x+y}- e^{-x-y}+\left(e^{x-y}-e^{-x+y}\right)+e^{x+y}-\left(e^{x-y}-e^{-x+y}\right) - e^{-x-y}}{4} \\ & =\left(\frac{e^{x+y}+e^{x-y}-e^{-x+y}-e^{-x-y}}{4}\right)+\left(\frac{e^{x+y}-e^{x-y}+e^{-x+y}-e^{-x-y}}{4}\right) \\ & =\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)+\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) \\ & =\sinh x \cosh y+\cosh x \sinh y \end{aligned} $$

Preuve/Démonstration facile

On part du coté droit de l’égalité :

$$ \begin{aligned} \sinh x \cosh y+\cosh x \sinh y &=\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)+\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) \\ & =\left(\frac{e^{x+y}+e^{x-y}-e^{-x+y}-e^{-x-y}}{4}\right)+\left(\frac{e^{x+y}-e^{x-y}+e^{-x+y}-e^{-x-y}}{4}\right) \\ & =\frac{2 e^{x+y}-2 e^{-x-y}}{4} \\ & =\frac{e^{x+y}-e^{-x-y}}{2} \\ & =\frac{e^{x+y}-e^{-(x+y)}}{2} \\ & =\sinh (x+y) \end{aligned} $$

Dans la même rubrique

  1. Démonstration / preuve de cos²x + sin²x=1
  2. Formule addition cos(a+b)=cos a cos b - sin a sin b
  3. Formule addition cosh(x + y) = cosh x cosh y +sinh x sinh y
  4. Formule addition cosh(x - y) = cosh x cosh y - sinh x sinh y
  5. Formule addition sin(a+b)=sin a cos b + cos a sin b
  6. Formule addition sinh(x + y) = sinh x cosh y +cosh x sinh y
  7. Formule addition sinh(x - y) = sinh x cosh y - cosh x sinh y
  8. Formule trigonométrique cos(a-b)=cos a cos b + sin a sin b
  9. Formule trigonométrique sin(2x)=2 sin x cos x
  10. Formule trigonométrique sin(a-b)=sin a cos b - sin b cos a
  11. La fonction cosinus est paire cos(-x)=cos x
  12. La fonction sinus est impaire sin(-x)=-sin x
  13. La fonction tangente est impaire tan(-x)=-tan x