La dérivée de f’ de la fonction cosinus f(x)=cos x est: f’(x) = - sin x pour toute valeur x

Dérivée de la fonction cos x

La dérivée $f’$ de la fonction cosinus $f(x)=\cos x$ est:

\[\forall x \in ]-\infty, +\infty[ , f'(x) = -\sin x\]

Preuve/Démonstration

\[\begin{aligned} &\frac{\cos (x+h)-\cos x}{h}=\frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos x}{h}\\ &\frac{\cos (x+h)-\cos x}{h}=\frac{\sin h}{h} \times(-\sin x)+\cos x \times \frac{\cos h-1}{h}\\ \end{aligned}\]

On a:

\[\begin{aligned} \frac{\cos h-1}{h} &=\frac{(\cos h-1)(\cos h+1)}{h(\cos h+1)} \\ &=\frac{\cos ^{2} h-1}{h(\cos h+1)} \\ &=\frac{-\sin ^{2} h}{h(\cos h+1)} \\ &=\frac{\sin h}{h} \times \frac{-\sin h}{\cos h+1} \\ \end{aligned}\]

d’où:

\[\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0\]

car

\[\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\]

Cette égalité a été démontrée dans /mathematiques/limites/article/limite-de-sin-x-x-1-quand-x-tend-vers-0

On a:

\[\begin{aligned} \lim _{h \rightarrow 0}\frac{\cos (x+h)-\cos x}{h}&=\lim _{h \rightarrow 0}\frac{\sin h}{h} \times(-\sin x)+\cos x \times \lim _{h \rightarrow 0}\frac{\cos h-1}{h}\\ &=1\times(-\sin x) + \cos x \times 0 \\ \end{aligned}\]

On conclut alors que:

\[\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=-\sin x\]