Math-Linux.com

Knowledge base dedicated to Linux and applied mathematics.

Home > Mathematics > Trigonometry > Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y

Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y

All the versions of this article: <English> <français>

We will show that for any real element x, y the trigonometric formula cosh(x + y) = cosh x cosh y +sinh x sinh y

Difficult Proof/Demonstration

We start from the left hand side of the equality:

$$ \begin{aligned} \cosh (x+y) & =\frac{e^{x+y}+e^{-(x+y)}}{2} \\ & =\frac{e^{x+y}+e^{-x-y}}{2} \\ & =\frac{2 e^{x+y}+2 e^{-x-y}}{4} \\ & =\frac{2 e^{x+y}+2 e^{-x-y}+\left(e^{x-y}+e^{-x+y}\right)-\left(e^{x-y}+e^{-x+y}\right)}{4} \\ & =\frac{2 e^{x+y}+\left(e^{x-y}+e^{-x+y}\right)-\left(e^{x-y}+e^{-x+y}\right)+2 e^{-x-y}}{4} \\ & =\frac{e^{x+y}+e^{x+y}+\left(e^{x-y}+e^{-x+y}\right)-\left(e^{x-y}+e^{-x+y}\right) + e^{-x-y}+ e^{-x-y}}{4} \\ & =\frac{e^{x+y}+ e^{-x-y}+\left(e^{x-y}+e^{-x+y}\right)+e^{x+y}-\left(e^{x-y}+e^{-x+y}\right) + e^{-x-y}}{4} \\ & =\left(\frac{e^{x+y}+e^{x-y}+e^{-x+y}+e^{-x-y}}{4}\right)+\left(\frac{e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}}{4}\right) \\ & =\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)+\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) \\ & =\cosh x \cosh y+\sinh x \sinh y \end{aligned} $$

Easy Proof/Demonstration

We start from the right hand side of the equality:

$$ \begin{aligned} \cosh x \cosh y+\sinh x \sinh y & =\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)+\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) \\ & =\left(\frac{e^{x+y}+e^{x-y}+e^{-x+y}+e^{-x-y}}{4}\right)+\left(\frac{e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}}{4}\right) \\ & =\frac{2 e^{x+y}+2 e^{-x-y}}{4} \\ & =\frac{e^{x+y}+e^{-x-y}}{2} \\ & =\frac{e^{x+y}+e^{-(x+y)}}{2} \\ & =\cosh (x+y) \end{aligned} $$

Also in this section

  1. Cosine is even function cos(-x)=cos x
  2. Demonstration / proof of cos²x + sin²x=1
  3. Sine is an odd function sin(-x)=-sin x
  4. Tangent is an odd function tan(-x)=-tan x
  5. Trigonometric formula sin(2x)=2 sin x cos x
  6. Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
  7. Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b
  8. Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
  9. Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y
  10. Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
  11. Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
  12. Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
  13. Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y