Demonstration / proof of cos²x + sin²x=1
We will demonstrate the following equality cos²x + sin²x=1 in several ways. By using the notion of derivative, addition formula and then geometrically by using the trigonometric circle.
Let’s prove the following equality:
\[\forall x\in \mathbb{R}, \quad\cos^2 x+ \sin^2 x =1\]Proof/Demonstration using the derivative
Let $f$ be the function defined as follows:
\[\forall x\in \mathbb{R}, \quad f(x)=\cos^2 x+ \sin^2 x\] \[\begin{aligned} f'(x)&=(\cos^2 x+ \sin^2 x)' \\ &= 2 \cos x (-\sin x) + 2 \sin x \cos x\\ &= - 2 \cos x \sin x + 2 \sin x \cos x\\ & =0 \end{aligned}\]This means that $f$ is constant on $\mathbb{R}$:
\[\exists C \in \mathbb{R},\forall x\in \mathbb{R}, \quad f(x)=C\]Let’s take $x=0$:
\[f(x=0)=\cos^2 0+ \sin^2 0=1\]We conclude:
\[\forall x\in \mathbb{R}, \quad f(x)=\cos^2 x+ \sin^2 x =1\]Proof/Demonstration using addition formulas
We had previously demonstrated the addition formula
\[\cos(a+b)=\cos a \cos b - \sin a \sin b\]Let $a=x\in \mathbb{R}$. Let $b=-a=-x$, we have, since cosine is an even function and sine an odd function:
\[\begin{aligned} \cos(x-x)&=\cos x \cos (-x) - \sin x \sin (-x)\\ &= \cos x \cos x - \sin x (-\sin x)\\ &= \cos^2 x + \sin^2 x\\ &=\cos 0\\ &=1 \end{aligned}\]We conclude then:
\[\forall x\in \mathbb{R}, \quad f(x)=\cos^2 x+ \sin^2 x=1\]Proof/Demonstration using the trigonometric circle
Consider the trigonometric circle of radius $r=1$. In the following triangle, we can apply the Pythagorean theorem: $x= \cos \theta$, $y= \sin \theta$. The hypotenuse $r= 1$, we then have:
\[\begin{aligned} x^2+y^2=r^2&=1 \\ \cos^2 \theta+ \sin^2 \theta&=1 \end{aligned}\]Then we have:
\[\forall \theta\in [0, 2\pi ], \quad \cos^2 \theta+ \sin^2 \theta =1\]We conclude that:
\[\forall x\in \mathbb{R}, \quad\cos^2 x+ \sin^2 x =1\]The conversion from radians $\theta$ to degrees $x$ is done as follows:
\[x=\theta \times \frac{180}{\pi}\]Example: $\theta=\pi/4$
\[x= \frac{\pi}{4} \times \frac{180 }{\pi}= \frac{180 }{4}=45^\circ\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry