Sine is an odd function sin(-x)=-sin x
We prove here that the sine function sin (-x) = - sin x is odd using the unit circle.
We start with the following configuration:
- unit circle $\mathcal{C}(O,R=1)$
- definition of the angle $x$
- definition of the angle $-x$
Now consider the triangles: $(OA_xA)$ and $(OA’_xA’)$.
Proof that sine is an odd function sin(-x) = -sin (x)
Take the definition of the sines of the angles $x$ and $-x$.
In the triangle $(OA_xA)$ :
\[\sin x=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{\vert OA_y\vert }{R}=\frac{\vert OA_y\vert }{1}=\vert OA_y\vert\]In the triangle $(OA’_xA’)$:
\[\sin (-x)=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{\vert OA'_y\vert }{R}=\frac{\vert OA'_y\vert }{1}=\vert OA'_y\vert\]By construction: $\vert OA_y\vert = -\vert OA’_y\vert $, then we have
\[\forall x\in \mathbb{R},\quad: \sin (-x)=-\sin x\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry