We will show that for any real element x, y the trigonometric formula (difference identity) sinh(x - y) = sinh x cosh y - cosh x sinh y

Difficult Proof/Demonstration

We start from the left hand side of the equality:

sinh(xy)=ex+ye(xy)2=ex+yex+y2=2exy2ex+y4=2exy2ex+y+(ex+yexy)(ex+yexy)4=2exy+(ex+yexy)(ex+yexy)2ex+y4=exy+exy+(ex+yexy)(ex+yexy)ex+yex+y4=exyex+y+(ex+yexy)+exy(ex+yexy)ex+y4=(exy+ex+yexyex+y4)+(exyex+y+exyex+y4)=(exex2)(ey+ey2)+(ex+ex2)(eyey2)=(exex2)(ey+ey2)(ex+ex2)(eyey2)=sinhxcoshycoshxsinhy

Easy Proof/Demonstration

We start from the right hand side of the equality:

sinhxcoshycoshxsinhy=(exex2)(ey+ey2)(ex+ex2)(eyey2)=(ex+y+exyex+yexy4)(ex+yexy+ex+yexy4)=2exy2ex+y4=ex+yex+y2=ex+ye(xy)2=sinh(xy)