Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
We will show that for any real element x, y the trigonometric formula (difference identity) sinh(x - y) = sinh x cosh y - cosh x sinh y
Difficult Proof/Demonstration
We start from the left hand side of the equality:
\[\begin{aligned} \sinh (x-y) & =\frac{e^{x+y}-e^{-(x-y)}}{2} \\ & =\frac{e^{x+y}-e^{-x+y}}{2} \\ & =\frac{2 e^{x-y}-2 e^{-x+y}}{4} \\ & =\frac{2 e^{x-y}-2 e^{-x+y}+\left(e^{x+y}-e^{-x-y}\right)-\left(e^{x+y}-e^{-x-y}\right)}{4} \\ & =\frac{2 e^{x-y}+\left(e^{x+y}-e^{-x-y}\right)-\left(e^{x+y}-e^{-x-y}\right)-2 e^{-x+y}}{4} \\ & =\frac{e^{x-y}+e^{x-y}+\left(e^{x+y}-e^{-x-y}\right)-\left(e^{x+y}-e^{-x-y}\right)- e^{-x+y}- e^{-x+y}}{4} \\ & =\frac{e^{x-y}- e^{-x+y}+\left(e^{x+y}-e^{-x-y}\right)+e^{x-y}-\left(e^{x+y}-e^{-x-y}\right) - e^{-x+y}}{4} \\ & =\left(\frac{e^{x-y}+e^{x+y}-e^{-x-y}-e^{-x+y}}{4}\right)+\left(\frac{e^{x-y}-e^{x+y}+e^{-x-y}-e^{-x+y}}{4}\right) \\ & =\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)+\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^{-y}-e^{y}}{2}\right) \\ & =\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)-\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^{y}-e^{-y}}{2}\right) \\ & =\sinh x \cosh y-\cosh x \sinh y \end{aligned}\]Easy Proof/Demonstration
We start from the right hand side of the equality:
\[\begin{aligned} \sinh x \cosh y - \cosh x \sinh y &=\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right)-\left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) \\ & =\left(\frac{e^{x+y}+e^{x-y}-e^{-x+y}-e^{-x-y}}{4}\right)-\left(\frac{e^{x+y}-e^{x-y}+e^{-x+y}-e^{-x-y}}{4}\right) \\ & =\frac{2 e^{x-y}-2 e^{-x+y}}{4} \\ & =\frac{e^{x+y}-e^{-x+y}}{2} \\ & =\frac{e^{x+y}-e^{-(x-y)}}{2} \\ & =\sinh (x-y) \end{aligned}\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry