Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
We are going to show that for any angles a, b the trigonometry formula cos (a-b)=cos a cos b + sin a sin b
We consider the demonstration of cos (a+b)=cos a cos b - sin a sin b as established.
It follows that:
\[\forall x,y \in \mathbb{R}, \quad \cos (x+y)=\cos x \cos y-\sin x \sin y\]In particular, by making the change of variable $x=a$, and $y=-b$
\[\cos(x+y)=\cos (a-b)=\cos a \cos (-b)-\sin a \sin (-b)\]Since the cosine function is even:
\[\cos (-b)=\cos b\] \[\sin (-b)=-\sin b\]we have:
\[\cos (a-b)=\cos a \cos b - \sin a \times - \sin b\]We conclude:
\[\forall a,b \in \mathbb{R},\cos (a-b)=\cos a \cos b + \sin a \sin b\]If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry