Trigonometric formula sin(2x)=2 sin x cos x
We will show that for any real element x the trigonometric formula sin(2x)=2 sin x cos xx
Let’s show that:
\[\forall x \in \mathbb{R}, \quad \sin(2x)=2 \sin x \cos x\]Proof/Demonstration
We will use the addition formula previously demonstrated:
\[\forall a,b \in \mathbb{R}, \quad \sin (a+b)=\sin a \cos b + \cos a \sin b\]Taking $a=b=x$. We have $\forall x \in \mathbb{R}$:
\[\begin{aligned} \sin(2x)= \sin (x+x) &=\sin x \cos x + \cos x \sin x\\ & =\sin x \cos x + \sin x \cos x \\ &= 2 \sin x \cos x \end{aligned}\]Conclusion
\(\forall x in \mathbb{R}, \quad \sin(2x)=2 \sin x \cos x\)
If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry