Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
We are going to show that for any angles a, b the trigonometry formula cos (a+b)=cos a cos b - sin a sin b
Let $(O ; \vec{i}, \vec{j})$ be an orthonormal reference frame, $a$ and $b$ two real numbers defined as follows:
\[\begin{aligned} a&=(\vec{i}, \overrightarrow{O A}) \\ b&=(\overrightarrow{O A}, \overrightarrow{O B}) \end{aligned}\]Where $A$ and $B$ are the points defined on the trigonometric circle relative to the angles $a$ and $b$.
We then have:
\[a+\frac{\pi}{2}=\left(\vec{i}, \overrightarrow{O A^{\prime}}\right)\]Where $A^{\prime}$ is the point defined on the trigonometric circle relative to the angle $\displaystyle a+\frac{\pi}{2}$ with $\left(\overrightarrow{O A}, \overrightarrow{O A^{\prime}}\right)=\displaystyle\frac{\pi}{2}$.
By definition, $\overrightarrow{O A}$ is defined as:
\[\overrightarrow{O A}=\cos a \times \vec{i} + \sin a \times \vec{j}\]$\overrightarrow{O A^{\prime}}$ is defined as:
\[\overrightarrow{O A^{\prime}}=\cos \left(a+\frac{\pi}{2}\right) \times\vec{i}+\sin \left(a+\frac{\pi}{2}\right) \times\vec{j} = -\sin a \times \vec{i} + \cos a \times \vec{j}\]$\overrightarrow{OB}$ is defined by:
\[\overrightarrow{OB}=\cos (a+b) \times\vec{i}+\sin (a+b) \times \vec{j}\]Consider the orthonormal reference frame $\left(O ; \overrightarrow{OA}, \overrightarrow{O A^{\prime}}\right)$. The vector $\overrightarrow{OB}$ in this reference frame is defined as:
\[\begin{aligned} \overrightarrow{OB} &=\cos b \times \overrightarrow{OA} + \sin b \times \overrightarrow{O A^{\prime}} \\ &=\cos b \times (\cos a \times \vec{i} + \sin a \times\vec{j}) + \sin b \times (-\sin a \times\vec{i} + \cos a \times\vec{j}) \\ &=(\cos a \times \cos b-\sin a \times \sin b) \times \vec{i}+(\sin a \times \cos b+\cos a \times \sin b) \times\vec{j} \end{aligned}\]But we have shown that
\[\overrightarrow{OB}=\cos (a+b) \times\vec{i}+\sin (a+b) \times\vec{j}\]We then obtain by identification:
\[\begin{aligned} \cos (a+b)&=\cos a \times \cos b-\sin a \times \sin b \\ \sin (a+b)&=\sin a \times \cos b+\cos a \times \sin b \end{aligned}\]We have thus demonstrated: \(\forall a,b \in \mathbb{R}, \quad \cos (a+b)=\cos a \cos b-\sin a \sin b\)
If you found this post or this website helpful and would like to support our work, please consider making a donation. Thank you!
Help UsArticles in the same category
- Trigonometry addition formula sinh(x + y) = sinh x cosh y +cosh x sinh y
- Trigonometry addition formula sinh(x - y) = sinh x cosh y - cosh x sinh y 8080624
- Trigonometry addition formula sin(a-b)=sin a cos b - sin b cos a
- Trigonometry addition formula sin(a+b)=sin a cos b + cos a sin b
- Trigonometry addition formula cosh(x + y) = cosh x cosh y +sinh x sinh y
- Trigonometry addition formula cosh(x - y) = cosh x cosh y - sinh x sinh y 8080622
- Trigonometry addition formula cos(a+b)=cos a cos b - sin a sin b
- Trigonometry addition formula cos(a-b)=cos a cos b + sin a sin b 8080598
- Trigonometric formula sin(2x)=2 sin x cos x
- Tangent is an odd function tan(-x)=-tan x
- Sine is an odd function sin(-x)=-sin x
- Demonstration / proof of cos²x + sin²x=1
- Cosine is even function cos(-x)=cos x
- Mathematics - Trigonometry