We are going to show that for any angles a, b the trigonometry formula cos (a+b)=cos a cos b - sin a sin b

Let (O;i,j) be an orthonormal reference frame, a and b two real numbers defined as follows:

a=(i,OA)b=(OA,OB)

Where A and B are the points defined on the trigonometric circle relative to the angles a and b.

We then have:

a+π2=(i,OA)

Where A is the point defined on the trigonometric circle relative to the angle a+π2 with (OA,OA)=π2.

By definition, OA is defined as:

OA=cosa×i+sina×j

OA is defined as:

OA=cos(a+π2)×i+sin(a+π2)×j=sina×i+cosa×j

OB is defined by:

OB=cos(a+b)×i+sin(a+b)×j

Consider the orthonormal reference frame (O;OA,OA). The vector OB in this reference frame is defined as:

OB=cosb×OA+sinb×OA=cosb×(cosa×i+sina×j)+sinb×(sina×i+cosa×j)=(cosa×cosbsina×sinb)×i+(sina×cosb+cosa×sinb)×j

But we have shown that

OB=cos(a+b)×i+sin(a+b)×j

We then obtain by identification:

cos(a+b)=cosa×cosbsina×sinbsin(a+b)=sina×cosb+cosa×sinb

We have thus demonstrated: a,bR,cos(a+b)=cosacosbsinasinb